منابع مشابه
Additive Regularization of Topic Models for Topic Selection and Sparse Factorization
Probabilistic topic modeling of text collections is a powerful tool for statistical text analysis. Determining the optimal number of topics remains a challenging problem in topic modeling. We propose a simple entropy regularization for topic selection in terms of Additive Regularization of Topic Models (ARTM), a multicriteria approach for combining regularizers. The entropy regularization gradu...
متن کاملRegularization Methods for Additive Models
This paper tackles the problem of model complexity in the context of additive models. Several methods have been proposed to estimate smoothing parameters, as well as to perform variable selection. Nevertheless, these procedures are inefficient or computationally expensive in high dimension. Also, the lasso technique has been adapted to additive models, however its experimental performance has n...
متن کاملSparse Regularization for High Dimensional Additive Models
We study the behavior of the l1 type of regularization for high dimensional additive models. Our results suggest remarkable similarities and differences between linear regression and additive models in high dimensional settings. In particular, our analysis indicates that, unlike in linear regression, l1 regularization does not yield optimal estimation for additive models of high dimensionality....
متن کاملRegularization for generalized additive mixed models by likelihood-based boosting.
OBJECTIVE With the emergence of semi- and nonparametric regression the generalized linear mixed model has been extended to account for additive predictors. However, available fitting methods fail in high dimensional settings where many explanatory variables are present. We extend the concept of boosting to generalized additive mixed models and present an appropriate algorithm that uses two diff...
متن کاملPenalized estimation in additive varying coefficient models using grouped regularization
Additive varying coefficient models are a natural extension of multiple linear regression models, allowing the regression coefficients to be functions of other variables. Therefore these models are more flexible to model more complex dependencies in data structures. In this paper we consider the problem of selecting in an automatic way the significant variables among a large set of variables, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2014
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-014-5476-6